首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   8篇
化学   152篇
数学   7篇
物理学   7篇
  2023年   1篇
  2022年   1篇
  2021年   9篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   10篇
  2012年   6篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   12篇
  2006年   16篇
  2005年   9篇
  2004年   13篇
  2003年   4篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1984年   2篇
  1983年   2篇
  1977年   2篇
  1976年   1篇
排序方式: 共有166条查询结果,搜索用时 312 毫秒
71.

Nafion®–polyaniline (PAn) composite films deposited by a two-step process on a stainless steel (SS) substrate were characterized in this study using Fourier transform infrared (FTIR) spectroscopy under various conditions employed to evaluate their anticorrosion properties. The SS|Nafion® electrode was first prepared by placing a certain amount of Nafion® on the SS substrate, and then polymerization of aniline was carried out potentiodynamically on the SS|Nafion® electrode. The SS|Nafion®–PAn electrodes subjected to both potentiodynamic polarization and open-circuit conditions in sulfuric acid solutions without and with chlorides appeared to have distinct differences in their FTIR spectra. It is proposed that under the electrochemical conditions used in this study, the PAn is mostly formed inside the Nafion® membrane with a high proportion of oligomers influencing the ionic transport through the membrane. The inhibition of pitting corrosion arises primarily from the enhanced permselectivity of the composite film due to the Nafion® membrane that prevents chloride transport. An essential beneficial effect comes also from the PAn redox properties on the growth of the passive oxide film. Even under severe corrosion conditions, Nafion®PAn films retain their redox activity and chemical stability, whereas the membrane crystallinity seems to be enhanced.

  相似文献   
72.
Transfer of the electronic excitation energy in calf thymus DNA is studied by time-resolved fluorescence spectroscopy. The fluorescence anisotropy, after an initial decay starting on the femtosecond time scale, dwindles down to ca. 0.1. The in-plane depolarized fluorescence decays are described by a stretched exponential law. Our observations are consistent with one-dimensional transfer mediated by charge-transfer excited states.  相似文献   
73.
Ruthenium complexes containing 4,7-diphenyl-1,10-phenanthroline disulfonate (bathophenanthroline disulfonate; BPS) ligands, Ru(BPS)34−, Ru(BPS)2(bipy)2− and Ru(BPS)(bipy)2, were compared to tris(2,2′-bipyridine)ruthenium(II) (Ru(bipy)32+), including examination of the wavelengths of maximum absorption and corrected emission intensity, photoluminescence quantum yield, stability of their oxidised ruthenium(III) form, and relative chemiluminescence intensities and signal-to-blank ratios with cerium(IV) sulfate and six analytes (codeine, morphine cocaine, potassium oxalate, furosemide and hydrochlorothiazide) in acidic aqueous solution. The presence of BPS ligands in the complex increased the photoluminescence quantum yield, but decreased the stability of the oxidised form of the reagent. In contrast to previous evidence showing much greater electrochemiluminescence intensities using Ru(BPS)2(bipy)2− and Ru(BPS)(bipy)2, these complexes did not provide superior chemiluminescence signals than their homoleptic analogues.  相似文献   
74.
75.
The excited-state properties of uracil, thymine, and nine other derivatives of uracil have been studied by steady-state and time-resolved spectroscopy. The excited-state lifetimes were measured using femtosecond fluorescence upconversion in the UV. The absorption and emission spectra of five representative compounds have been computed at the TD-DFT level, using the PBE0 exchange-correlation functional for ground- and excited-state geometry optimization and the Polarizable Continuum Model (PCM) to simulate the aqueous solution. The calculated spectra are in good agreement with the experimental ones. Experiments show that the excited-state lifetimes of all the compounds examined are dominated by an ultrafast (<100 fs) component. Only 5-substituted compounds show more complex behavior than uracil, exhibiting longer excited-state lifetimes and biexponential fluorescence decays. The S(0)/S(1) conical intersection, located at CASSCF (8/8) level, is indeed characterized by pyramidalization and out of plane motion of the substituents on the C5 atom. A thorough analysis of the excited-state Potential Energy Surfaces, performed at the PCM/TD-DFT(PBE0) level in aqueous solution, shows that the energy barrier separating the local S(1) minimum from the conical intersection increases going from uracil through thymine to 5-fluorouracil, in agreement with the ordering of the experimental excited-state lifetime.  相似文献   
76.
An overview is given of the results of organotin-NSAIDs interactions. Several organotin complexes with NSAIDs, derivatives of the carboxylic acid family and oxicam family, have been synthesized and characterized by spectroscopy and X-ray crystallography at the University of Ioannina. Results concerning the biological activity of these organotin complexes will be referred.  相似文献   
77.
The crystal structure of complex [Ph2Sn(Hpir)2 ·CH3CN] shows for the first time chelation to a metal atom of piroxicam through the keto‐enolate oxygen atoms. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
78.
Nafion?–polyaniline (PAn) composite films deposited by a two-step process on a stainless steel (SS) substrate were characterized in this study using Fourier transform infrared (FTIR) spectroscopy under various conditions employed to evaluate their anticorrosion properties. The SS|Nafion? electrode was first prepared by placing a certain amount of Nafion? on the SS substrate, and then polymerization of aniline was carried out potentiodynamically on the SS|Nafion? electrode. The SS|Nafion?–PAn electrodes subjected to both potentiodynamic polarization and open-circuit conditions in sulfuric acid solutions without and with chlorides appeared to have distinct differences in their FTIR spectra. It is proposed that under the electrochemical conditions used in this study, the PAn is mostly formed inside the Nafion? membrane with a high proportion of oligomers influencing the ionic transport through the membrane. The inhibition of pitting corrosion arises primarily from the enhanced permselectivity of the composite film due to the Nafion? membrane that prevents chloride transport. An essential beneficial effect comes also from the PAn redox properties on the growth of the passive oxide film. Even under severe corrosion conditions, Nafion???/em>PAn films retain their redox activity and chemical stability, whereas the membrane crystallinity seems to be enhanced.  相似文献   
79.
Metal-carbon composites have shown considerable hydrogen storage potential at room temperature. In the present work the behaviour of two different Pd amalgam doped carbon substrates, namely a carbogenic foam and a mildly oxidised ordered mesoporous carbon, are compared on the basis of their hydrogen sorption properties at 77 and 298 K and low pressures, aiming to investigate the effect of surface on the storage capacity. In both cases, the introduction of alloy nanoparticles leads to an improvement of the hydrogen uptake with respect to pure carbons. This effect is significant for the carbogenic foam however small for the ordered carbon.   相似文献   
80.
The photochemical properties of the DNA duplex (dA)(20)·(dT)(20) are compared with those of the parent single strands. It is shown that base pairing increases the probability of absorbing UVA photons, probably due to the formation of charge-transfer states. UVA excitation induces fluorescence peaking at ~420 nm and decaying on the nanosecond time scale. The fluorescence quantum yield, the fluorescence lifetime, and the quantum yield for cyclobutane dimer formation increase upon base pairing. Such behavior contrasts with that of the UVC-induced processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号